Вы здесь: ГлавнаяРелейная защита

Выбор тока срабатывания дифференциальных защит

Расчеты дифференциальных защит двухобмоточных трансформаторов с большим диапазоном регулирования напряжения (AUj,^ % > 10 %) следует начинать со стороны ВН, так как именно на этой стороне установлено устройство РПН .

Ток срабатывания дифференциальной защиты отстраивается от броска тока намагничивания (для всех защит) и от тока небаланса (кроме защиты с торможением), то есть соответственно:

2.6.1. Выбор тока срабатывания дифференциальных защит

где kOT CP — коэффициент отстройки от броска тока намагничивания, для дифференциальной токовой отсечки kОТ СР ≈ (3,4–4), для реле типа РНТ kOT CP = 1,3, для реле ДЗТ — kOT CP = 1,5;

Расчет числа витков обмоток реле рнт-565 и дзт-11

Определяется ток срабатывания реле для стороны ВН:

2.6.2. Расчет числа витков обмоток реле РНТ-565 и ДЗТ-11

Рассчитывается и округляется в меньшую сторону число витков уравнительной обмотки на стороне ВН (первой, см. 26):

2.6.2. Расчет числа витков обмоток реле РНТ-565 и ДЗТ-11

где FCP — магнитодвижущая сила, необходимая для срабатывания реле, для реле РНТ-565 и ДЗТ-11 FCP = 100 ± 5 A витков. Рассчитывается и округляется в ближайшую сторону число витков второй уравнительной обмотки (включенной на стороне НН):

2.6.2. Расчет числа витков обмоток реле РНТ-565 и ДЗТ-11

Выбор параметров срабатывания направленных токовых защит

Направленные МТЗ необходимо отстраивать от максимальных рабочих токов с учетом самозапуска электродвигателей в послеаварийных режимах после отключения смежного присоединения, то есть так же, как и обычные ненаправленные МТЗ:

2.5.4. Выбор параметров срабатывания направленных токовых защит

В сетях с глухозаземленной нейтралью направленные МТЗ должны быть также отстроены от токов, возникающих в неповрежденных фазах при однофазных и двухфазных КЗ на землю (если не используется блокировка действия от защит, действующих при замыканиях на землю) :

I СЗ = kЗ × IНФ,

где kЗ — коэффициент запаса (kЗ = 1,15-1,3);

Реле направления мощности

Реле направления мощности

Для того чтобы определить направление мощности, передаваемой по контролируемой электрической сети, в месте установки защиты используют специальное реле — реле направления мощности. Отечественная промышленность выпускает реле направления мощности двух видов: индукционные (серий РБМ-170 и РБМ-270) и микроэлектронные (типа РМ-11 и РМ-12) .

Индукционное реле направления мощности [2, 3] имеет две обмотки, размещенные на полюсах замкнутого стального магнитопровода 1 (17). Одна из них, токовая (4) включается во вторичные цепи ТТ, и ток в ней (Ip) определяется вторичным током ТТ. Вторая — потенциальная (5) — подключается ко вторичной обмотке трансформатора напряжения (ТН), и ток в ней (IH) пропорционален подведенному напряжению (UH). Между полюсами расположен внутренний стальной сердечник 2 цилиндрической формы и алюминиевый ротор 3, имеющий форму стакана. На роторе укреплен контактный мостик 6. При направлении мощности КЗ от шин в линию этот мостик замыкает неподвижные выходные контакты 7 (реле срабатывает). Возврат реле происходит под воздействием противодействующей пружины 8.

Схемы направленных защит

В отечественных энергосистемах принято использовать в направленных токовых защитах так называемую 90-градусную схему включения реле направления мощности смешанного типа. При этом в токовую катушку первого реле подается через ТТ ток фазы А, а к его потенциальной катушке подводится через ТН линейное напряжение ВС (21, а) . Угол между этими векторами составляет 90°. Отсюда и произошло название схемы включения реле. Такое сочетание сигналов, подводимых к реле, улучшает его работоспособность при близких КЗ.

2.5.3. Схемы направленных защит

Для трехфазного исполнения защиты ÍP1 = ÍA; ÚP1 = ÚBC; ÍP2 = ÍB; ÚP2 = ÚCA; ÍP3 = 4; ÚP3 = ÚAB, где ÍP1, ÍP2, 4 — вектoры токов 15 токовых катушках первого, второго и третьего реле направления мощности; ÍAÍB, ÍC — векторы вторичных токов соответствующих фаз; ÚP1, ÚP2, ÚP3 — векторы напряжений, подведенных к потенциальным катушкам первого, второго и третьего реле направления мощности; ÚAB, ÚBC, ÚCA — векторы вторичных линейных напряжений.

Трехступенчатые токовые защиты

Трехступенчатые токовые защиты

Для того чтобы обеспечить надежную защиту электрических сетей при повреждениях, часто недостаточно использовать защиту одного вида. Так, токовые отсечки обеспечивают быстрое выявление повреждений, но имеют зоны нечувствительности в конце контролируемого объекта. МТЗ имеют достаточно протяженные зоны действия, но их приходится выполнять с большими выдержками времени срабатывания, особенно на головных участках сетей, где требуется высокое быстродействие. Для того чтобы максимально использовать достоинства защит разных типов, их объединяют в один комплекс.

Наибольшее распространение получили трехступенчатые токовые защиты. В качестве первой ступени используются токовые отсечки мгновенного действия (селективные токовые отсечки). В качестве второй — токовые отсечки с выдержкой времени срабатывания (неселективные токовые отсечки). В качестве третьей ступени — МТЗ.

Страница 5 из 7

Яндекс.Метрика